Finite groups and Lie rings with a metacyclic Frobenius group of automorphisms

نویسنده

  • E. I. Khukhro
چکیده

Suppose that a finite group G admits a Frobenius group of automorphisms FH of coprime order with cyclic kernel F and complement H such that the fixed point subgroup CG(H) of the complement is nilpotent of class c. It is proved that G has a nilpotent characteristic subgroup of index bounded in terms of c, |CG(F )|, and |F | whose nilpotency class is bounded in terms of c and |H| only. This generalizes the previous theorem of the authors and P. Shumyatsky, where for the case of CG(F ) = 1 the whole group was proved to be nilpotent of (c, |H|)-bounded class. Examples show that the condition of F being cyclic is essential. B. Hartley’s theorem based on the classification provides reduction to soluble groups. Then representation theory arguments are used to bound the index of the Fitting subgroup. Lie ring methods are used for nilpotent groups. A similar theorem on Lie rings with a metacyclic Frobenius group of automorphisms FH is also proved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius groups of automorphisms and their fixed points

Suppose that a finite group G admits a Frobenius group of automorphisms FH with kernel F and complement H such that the fixed-point subgroup of F is trivial: CG(F ) = 1. In this situation various properties of G are shown to be close to the corresponding properties of CG(H). By using Clifford’s theorem it is proved that the order |G| is bounded in terms of |H| and |CG(H)|, the rank of G is boun...

متن کامل

OD-characterization of $U_3(9)$ and its group of automorphisms

Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field  with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

Fiber bundles and Lie algebras of top spaces

In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.

متن کامل

Some finite groups with divisibility graph containing no triangles

Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013